| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
nmsq.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 4 |
1 2 3
|
cphnm |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 5 |
4
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) ) |
| 6 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 7 |
6
|
3anidm23 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 8 |
7
|
sqsqrtd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 9 |
5 8
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |