Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
β’ π = ( Base β π ) |
2 |
|
nmsq.h |
β’ , = ( Β·π β π ) |
3 |
|
nmsq.n |
β’ π = ( norm β π ) |
4 |
|
cphnmcl.f |
β’ πΉ = ( Scalar β π ) |
5 |
|
cphnmcl.k |
β’ πΎ = ( Base β πΉ ) |
6 |
1 2 3
|
cphnmfval |
β’ ( π β βPreHil β π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |
7 |
|
simpl |
β’ ( ( π β βPreHil β§ π₯ β π ) β π β βPreHil ) |
8 |
|
cphphl |
β’ ( π β βPreHil β π β PreHil ) |
9 |
8
|
adantr |
β’ ( ( π β βPreHil β§ π₯ β π ) β π β PreHil ) |
10 |
|
simpr |
β’ ( ( π β βPreHil β§ π₯ β π ) β π₯ β π ) |
11 |
4 2 1 5
|
ipcl |
β’ ( ( π β PreHil β§ π₯ β π β§ π₯ β π ) β ( π₯ , π₯ ) β πΎ ) |
12 |
9 10 10 11
|
syl3anc |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( π₯ , π₯ ) β πΎ ) |
13 |
1 2 3
|
nmsq |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( ( π β π₯ ) β 2 ) = ( π₯ , π₯ ) ) |
14 |
|
cphngp |
β’ ( π β βPreHil β π β NrmGrp ) |
15 |
1 3
|
nmcl |
β’ ( ( π β NrmGrp β§ π₯ β π ) β ( π β π₯ ) β β ) |
16 |
14 15
|
sylan |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( π β π₯ ) β β ) |
17 |
16
|
resqcld |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( ( π β π₯ ) β 2 ) β β ) |
18 |
13 17
|
eqeltrrd |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( π₯ , π₯ ) β β ) |
19 |
16
|
sqge0d |
β’ ( ( π β βPreHil β§ π₯ β π ) β 0 β€ ( ( π β π₯ ) β 2 ) ) |
20 |
19 13
|
breqtrd |
β’ ( ( π β βPreHil β§ π₯ β π ) β 0 β€ ( π₯ , π₯ ) ) |
21 |
4 5
|
cphsqrtcl |
β’ ( ( π β βPreHil β§ ( ( π₯ , π₯ ) β πΎ β§ ( π₯ , π₯ ) β β β§ 0 β€ ( π₯ , π₯ ) ) ) β ( β β ( π₯ , π₯ ) ) β πΎ ) |
22 |
7 12 18 20 21
|
syl13anc |
β’ ( ( π β βPreHil β§ π₯ β π ) β ( β β ( π₯ , π₯ ) ) β πΎ ) |
23 |
6 22
|
fmpt3d |
β’ ( π β βPreHil β π : π βΆ πΎ ) |