| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
nmsq.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 4 |
|
cphnmcl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
cphnmcl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
1 2 3
|
cphnmfval |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) |
| 8 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 10 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 11 |
4 2 1 5
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ 𝐾 ) |
| 12 |
9 10 10 11
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ 𝐾 ) |
| 13 |
1 2 3
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( 𝑥 , 𝑥 ) ) |
| 14 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
| 15 |
1 3
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑥 ) ∈ ℝ ) |
| 16 |
14 15
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑥 ) ∈ ℝ ) |
| 17 |
16
|
resqcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 18 |
13 17
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ ℝ ) |
| 19 |
16
|
sqge0d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) ) |
| 20 |
19 13
|
breqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 21 |
4 5
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝑥 , 𝑥 ) ∈ 𝐾 ∧ ( 𝑥 , 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 , 𝑥 ) ) ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ 𝐾 ) |
| 22 |
7 12 18 20 21
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ 𝐾 ) |
| 23 |
6 22
|
fmpt3d |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 : 𝑉 ⟶ 𝐾 ) |