| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
| 4 |
|
ffn |
⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) |
| 5 |
3 4
|
ax-mp |
⊢ √ Fn ℂ |
| 6 |
|
inss2 |
⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ( 0 [,) +∞ ) |
| 7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 9 |
7 8
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 10 |
6 9
|
sstri |
⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ |
| 11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ 𝐾 ) |
| 12 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 13 |
12
|
biimpri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 15 |
11 14
|
elind |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
| 16 |
|
fnfvima |
⊢ ( ( √ Fn ℂ ∧ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
| 17 |
5 10 15 16
|
mp3an12i |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 19 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 20 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 21 |
18 19 20 1 2
|
iscph |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
| 22 |
21
|
simp2bi |
⊢ ( 𝑊 ∈ ℂPreHil → ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 24 |
17 23
|
sylan2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |