Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
β’ πΉ = ( Scalar β π ) |
2 |
|
cphsca.k |
β’ πΎ = ( Base β πΉ ) |
3 |
|
sqrtf |
β’ β : β βΆ β |
4 |
|
ffn |
β’ ( β : β βΆ β β β Fn β ) |
5 |
3 4
|
ax-mp |
β’ β Fn β |
6 |
|
inss2 |
β’ ( πΎ β© ( 0 [,) +β ) ) β ( 0 [,) +β ) |
7 |
|
rge0ssre |
β’ ( 0 [,) +β ) β β |
8 |
|
ax-resscn |
β’ β β β |
9 |
7 8
|
sstri |
β’ ( 0 [,) +β ) β β |
10 |
6 9
|
sstri |
β’ ( πΎ β© ( 0 [,) +β ) ) β β |
11 |
|
simp1 |
β’ ( ( π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄ ) β π΄ β πΎ ) |
12 |
|
elrege0 |
β’ ( π΄ β ( 0 [,) +β ) β ( π΄ β β β§ 0 β€ π΄ ) ) |
13 |
12
|
biimpri |
β’ ( ( π΄ β β β§ 0 β€ π΄ ) β π΄ β ( 0 [,) +β ) ) |
14 |
13
|
3adant1 |
β’ ( ( π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄ ) β π΄ β ( 0 [,) +β ) ) |
15 |
11 14
|
elind |
β’ ( ( π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄ ) β π΄ β ( πΎ β© ( 0 [,) +β ) ) ) |
16 |
|
fnfvima |
β’ ( ( β Fn β β§ ( πΎ β© ( 0 [,) +β ) ) β β β§ π΄ β ( πΎ β© ( 0 [,) +β ) ) ) β ( β β π΄ ) β ( β β ( πΎ β© ( 0 [,) +β ) ) ) ) |
17 |
5 10 15 16
|
mp3an12i |
β’ ( ( π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄ ) β ( β β π΄ ) β ( β β ( πΎ β© ( 0 [,) +β ) ) ) ) |
18 |
|
eqid |
β’ ( Base β π ) = ( Base β π ) |
19 |
|
eqid |
β’ ( Β·π β π ) = ( Β·π β π ) |
20 |
|
eqid |
β’ ( norm β π ) = ( norm β π ) |
21 |
18 19 20 1 2
|
iscph |
β’ ( π β βPreHil β ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ ( norm β π ) = ( π₯ β ( Base β π ) β¦ ( β β ( π₯ ( Β·π β π ) π₯ ) ) ) ) ) |
22 |
21
|
simp2bi |
β’ ( π β βPreHil β ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ ) |
23 |
22
|
sselda |
β’ ( ( π β βPreHil β§ ( β β π΄ ) β ( β β ( πΎ β© ( 0 [,) +β ) ) ) ) β ( β β π΄ ) β πΎ ) |
24 |
17 23
|
sylan2 |
β’ ( ( π β βPreHil β§ ( π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄ ) ) β ( β β π΄ ) β πΎ ) |