Metamath Proof Explorer


Theorem cphsqrtcl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphsqrtcl WCPreHilAKA0AAK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 sqrtf :
4 ffn :Fn
5 3 4 ax-mp Fn
6 inss2 K0+∞0+∞
7 rge0ssre 0+∞
8 ax-resscn
9 7 8 sstri 0+∞
10 6 9 sstri K0+∞
11 simp1 AKA0AAK
12 elrege0 A0+∞A0A
13 12 biimpri A0AA0+∞
14 13 3adant1 AKA0AA0+∞
15 11 14 elind AKA0AAK0+∞
16 fnfvima FnK0+∞AK0+∞AK0+∞
17 5 10 15 16 mp3an12i AKA0AAK0+∞
18 eqid BaseW=BaseW
19 eqid 𝑖W=𝑖W
20 eqid normW=normW
21 18 19 20 1 2 iscph WCPreHilWPreHilWNrmModF=fld𝑠KK0+∞KnormW=xBaseWx𝑖Wx
22 21 simp2bi WCPreHilK0+∞K
23 22 sselda WCPreHilAK0+∞AK
24 17 23 sylan2 WCPreHilAKA0AAK