Metamath Proof Explorer


Theorem cphabscl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphabscl WCPreHilAKAK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 1 2 cphsubrg WCPreHilKSubRingfld
4 cnfldbas =Basefld
5 4 subrgss KSubRingfldK
6 3 5 syl WCPreHilK
7 6 sselda WCPreHilAKA
8 absval AA=AA
9 7 8 syl WCPreHilAKA=AA
10 simpl WCPreHilAKWCPreHil
11 3 adantr WCPreHilAKKSubRingfld
12 simpr WCPreHilAKAK
13 1 2 cphcjcl WCPreHilAKAK
14 cnfldmul ×=fld
15 14 subrgmcl KSubRingfldAKAKAAK
16 11 12 13 15 syl3anc WCPreHilAKAAK
17 7 cjmulrcld WCPreHilAKAA
18 7 cjmulge0d WCPreHilAK0AA
19 1 2 cphsqrtcl WCPreHilAAKAA0AAAAK
20 10 16 17 18 19 syl13anc WCPreHilAKAAK
21 9 20 eqeltrd WCPreHilAKAK