Metamath Proof Explorer


Theorem cphsqrtcl2

Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphsqrtcl2 W CPreHil A K ¬ A + A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 sqrt0 0 = 0
4 fveq2 A = 0 A = 0
5 id A = 0 A = 0
6 3 4 5 3eqtr4a A = 0 A = A
7 6 adantl W CPreHil A K ¬ A + A = 0 A = A
8 simpl2 W CPreHil A K ¬ A + A = 0 A K
9 7 8 eqeltrd W CPreHil A K ¬ A + A = 0 A K
10 simpl1 W CPreHil A K ¬ A + A 0 W CPreHil
11 1 2 cphsubrg W CPreHil K SubRing fld
12 10 11 syl W CPreHil A K ¬ A + A 0 K SubRing fld
13 cnfldbas = Base fld
14 13 subrgss K SubRing fld K
15 12 14 syl W CPreHil A K ¬ A + A 0 K
16 simpl2 W CPreHil A K ¬ A + A 0 A K
17 1 2 cphabscl W CPreHil A K A K
18 10 16 17 syl2anc W CPreHil A K ¬ A + A 0 A K
19 15 16 sseldd W CPreHil A K ¬ A + A 0 A
20 19 abscld W CPreHil A K ¬ A + A 0 A
21 19 absge0d W CPreHil A K ¬ A + A 0 0 A
22 1 2 cphsqrtcl W CPreHil A K A 0 A A K
23 10 18 20 21 22 syl13anc W CPreHil A K ¬ A + A 0 A K
24 cnfldadd + = + fld
25 24 subrgacl K SubRing fld A K A K A + A K
26 12 18 16 25 syl3anc W CPreHil A K ¬ A + A 0 A + A K
27 1 2 cphabscl W CPreHil A + A K A + A K
28 10 26 27 syl2anc W CPreHil A K ¬ A + A 0 A + A K
29 15 26 sseldd W CPreHil A K ¬ A + A 0 A + A
30 simpl3 W CPreHil A K ¬ A + A 0 ¬ A +
31 20 recnd W CPreHil A K ¬ A + A 0 A
32 31 19 subnegd W CPreHil A K ¬ A + A 0 A A = A + A
33 32 eqeq1d W CPreHil A K ¬ A + A 0 A A = 0 A + A = 0
34 19 negcld W CPreHil A K ¬ A + A 0 A
35 31 34 subeq0ad W CPreHil A K ¬ A + A 0 A A = 0 A = A
36 33 35 bitr3d W CPreHil A K ¬ A + A 0 A + A = 0 A = A
37 absrpcl A A 0 A +
38 19 37 sylancom W CPreHil A K ¬ A + A 0 A +
39 eleq1 A = A A + A +
40 38 39 syl5ibcom W CPreHil A K ¬ A + A 0 A = A A +
41 36 40 sylbid W CPreHil A K ¬ A + A 0 A + A = 0 A +
42 41 necon3bd W CPreHil A K ¬ A + A 0 ¬ A + A + A 0
43 30 42 mpd W CPreHil A K ¬ A + A 0 A + A 0
44 29 43 absne0d W CPreHil A K ¬ A + A 0 A + A 0
45 1 2 cphdivcl W CPreHil A + A K A + A K A + A 0 A + A A + A K
46 10 26 28 44 45 syl13anc W CPreHil A K ¬ A + A 0 A + A A + A K
47 cnfldmul × = fld
48 47 subrgmcl K SubRing fld A K A + A A + A K A A + A A + A K
49 12 23 46 48 syl3anc W CPreHil A K ¬ A + A 0 A A + A A + A K
50 15 49 sseldd W CPreHil A K ¬ A + A 0 A A + A A + A
51 eqid A A + A A + A = A A + A A + A
52 51 sqreulem A A + A 0 A A + A A + A 2 = A 0 A A + A A + A i A A + A A + A +
53 19 43 52 syl2anc W CPreHil A K ¬ A + A 0 A A + A A + A 2 = A 0 A A + A A + A i A A + A A + A +
54 53 simp1d W CPreHil A K ¬ A + A 0 A A + A A + A 2 = A
55 53 simp2d W CPreHil A K ¬ A + A 0 0 A A + A A + A
56 53 simp3d W CPreHil A K ¬ A + A 0 i A A + A A + A +
57 df-nel i A A + A A + A + ¬ i A A + A A + A +
58 56 57 sylib W CPreHil A K ¬ A + A 0 ¬ i A A + A A + A +
59 50 19 54 55 58 eqsqrtd W CPreHil A K ¬ A + A 0 A A + A A + A = A
60 59 49 eqeltrrd W CPreHil A K ¬ A + A 0 A K
61 9 60 pm2.61dane W CPreHil A K ¬ A + A K