| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 4 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = ( √ ‘ 0 ) ) |
| 5 |
|
id |
⊢ ( 𝐴 = 0 → 𝐴 = 0 ) |
| 6 |
3 4 5
|
3eqtr4a |
⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = 𝐴 ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → ( √ ‘ 𝐴 ) = 𝐴 ) |
| 8 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → 𝐴 ∈ 𝐾 ) |
| 9 |
7 8
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 10 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝑊 ∈ ℂPreHil ) |
| 11 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 13 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 14 |
13
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 15 |
12 14
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐾 ⊆ ℂ ) |
| 16 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ 𝐾 ) |
| 17 |
1 2
|
cphabscl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |
| 18 |
10 16 17
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |
| 19 |
15 16
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 20 |
19
|
abscld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 21 |
19
|
absge0d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 22 |
1 2
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( abs ‘ 𝐴 ) ∈ 𝐾 ∧ ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 23 |
10 18 20 21 22
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 24 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 25 |
24
|
subrgacl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( abs ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) |
| 26 |
12 18 16 25
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) |
| 27 |
1 2
|
cphabscl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ) |
| 28 |
10 26 27
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ) |
| 29 |
15 26
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 30 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ¬ - 𝐴 ∈ ℝ+ ) |
| 31 |
20
|
recnd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 32 |
31 19
|
subnegd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 34 |
19
|
negcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → - 𝐴 ∈ ℂ ) |
| 35 |
31 34
|
subeq0ad |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 36 |
33 35
|
bitr3d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 37 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 38 |
19 37
|
sylancom |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 39 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℝ+ ↔ - 𝐴 ∈ ℝ+ ) ) |
| 40 |
38 39
|
syl5ibcom |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → - 𝐴 ∈ ℝ+ ) ) |
| 41 |
36 40
|
sylbid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 → - 𝐴 ∈ ℝ+ ) ) |
| 42 |
41
|
necon3bd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) ) |
| 43 |
30 42
|
mpd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) |
| 44 |
29 43
|
absne0d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) |
| 45 |
1 2
|
cphdivcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ∧ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ∧ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) |
| 46 |
10 26 28 44 45
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) |
| 47 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 48 |
47
|
subrgmcl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ 𝐾 ) |
| 49 |
12 23 46 48
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ 𝐾 ) |
| 50 |
15 49
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ) |
| 51 |
|
eqid |
⊢ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 52 |
51
|
sqreulem |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 53 |
19 43 52
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 54 |
53
|
simp1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ) |
| 55 |
53
|
simp2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 56 |
53
|
simp3d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) |
| 57 |
|
df-nel |
⊢ ( ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ↔ ¬ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∈ ℝ+ ) |
| 58 |
56 57
|
sylib |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ¬ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∈ ℝ+ ) |
| 59 |
50 19 54 55 58
|
eqsqrtd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( √ ‘ 𝐴 ) ) |
| 60 |
59 49
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 61 |
9 60
|
pm2.61dane |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |