| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 5 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 6 |
5
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 7 |
4 6
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐾 ⊆ ℂ ) |
| 8 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ 𝐾 ) |
| 9 |
7 8
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 10 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ 𝐾 ) |
| 11 |
7 10
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 12 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
| 13 |
9 11 12
|
divrecd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 14 |
1 2
|
cphreccl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ 𝐾 ) |
| 15 |
14
|
3adant3r1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 1 / 𝐵 ) ∈ 𝐾 ) |
| 16 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 17 |
16
|
subrgmcl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ ( 1 / 𝐵 ) ∈ 𝐾 ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ 𝐾 ) |
| 18 |
4 8 15 17
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ 𝐾 ) |
| 19 |
13 18
|
eqeltrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |