| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cphsca.k |  |-  K = ( Base ` F ) | 
						
							| 3 | 1 2 | cphsubrg |  |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K e. ( SubRing ` CCfld ) ) | 
						
							| 5 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 6 | 5 | subrgss |  |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K C_ CC ) | 
						
							| 8 |  | simpr1 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. K ) | 
						
							| 9 | 7 8 | sseldd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. CC ) | 
						
							| 10 |  | simpr2 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. K ) | 
						
							| 11 | 7 10 | sseldd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. CC ) | 
						
							| 12 |  | simpr3 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B =/= 0 ) | 
						
							| 13 | 9 11 12 | divrecd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) | 
						
							| 14 | 1 2 | cphreccl |  |-  ( ( W e. CPreHil /\ B e. K /\ B =/= 0 ) -> ( 1 / B ) e. K ) | 
						
							| 15 | 14 | 3adant3r1 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( 1 / B ) e. K ) | 
						
							| 16 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 17 | 16 | subrgmcl |  |-  ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( 1 / B ) e. K ) -> ( A x. ( 1 / B ) ) e. K ) | 
						
							| 18 | 4 8 15 17 | syl3anc |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A x. ( 1 / B ) ) e. K ) | 
						
							| 19 | 13 18 | eqeltrd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) e. K ) |