Description: The scalar field of a subcomplex pre-Hilbert space is a subring of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) | |
| cphsca.k | |- K = ( Base ` F ) | ||
| Assertion | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) | |
| 2 | cphsca.k | |- K = ( Base ` F ) | |
| 3 | 1 2 | cphsca | |- ( W e. CPreHil -> F = ( CCfld |`s K ) ) | 
| 4 | cphlvec | |- ( W e. CPreHil -> W e. LVec ) | |
| 5 | 1 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) | 
| 6 | 4 5 | syl | |- ( W e. CPreHil -> F e. DivRing ) | 
| 7 | 2 3 6 | cphsubrglem | |- ( W e. CPreHil -> ( F = ( CCfld |`s K ) /\ K = ( K i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) | 
| 8 | 7 | simp3d | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |