| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsubrglem.k |  |-  K = ( Base ` F ) | 
						
							| 2 |  | cphsubrglem.1 |  |-  ( ph -> F = ( CCfld |`s A ) ) | 
						
							| 3 |  | cphsubrglem.2 |  |-  ( ph -> F e. DivRing ) | 
						
							| 4 | 2 | fveq2d |  |-  ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s A ) ) ) | 
						
							| 5 |  | drngring |  |-  ( F e. DivRing -> F e. Ring ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> F e. Ring ) | 
						
							| 7 | 2 6 | eqeltrrd |  |-  ( ph -> ( CCfld |`s A ) e. Ring ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( CCfld |`s A ) ) = ( Base ` ( CCfld |`s A ) ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` ( CCfld |`s A ) ) = ( 0g ` ( CCfld |`s A ) ) | 
						
							| 10 | 8 9 | ring0cl |  |-  ( ( CCfld |`s A ) e. Ring -> ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) ) | 
						
							| 11 |  | reldmress |  |-  Rel dom |`s | 
						
							| 12 |  | eqid |  |-  ( CCfld |`s A ) = ( CCfld |`s A ) | 
						
							| 13 | 11 12 8 | elbasov |  |-  ( ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) -> ( CCfld e. _V /\ A e. _V ) ) | 
						
							| 14 | 7 10 13 | 3syl |  |-  ( ph -> ( CCfld e. _V /\ A e. _V ) ) | 
						
							| 15 | 14 | simprd |  |-  ( ph -> A e. _V ) | 
						
							| 16 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 17 | 12 16 | ressbas |  |-  ( A e. _V -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ph -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) | 
						
							| 19 | 4 18 | eqtr4d |  |-  ( ph -> ( Base ` F ) = ( A i^i CC ) ) | 
						
							| 20 | 1 19 | eqtrid |  |-  ( ph -> K = ( A i^i CC ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ph -> ( CCfld |`s K ) = ( CCfld |`s ( A i^i CC ) ) ) | 
						
							| 22 | 16 | ressinbas |  |-  ( A e. _V -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) | 
						
							| 23 | 15 22 | syl |  |-  ( ph -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) | 
						
							| 24 | 21 23 | eqtr4d |  |-  ( ph -> ( CCfld |`s K ) = ( CCfld |`s A ) ) | 
						
							| 25 | 2 24 | eqtr4d |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 26 | 25 6 | eqeltrrd |  |-  ( ph -> ( CCfld |`s K ) e. Ring ) | 
						
							| 27 |  | cnring |  |-  CCfld e. Ring | 
						
							| 28 | 26 27 | jctil |  |-  ( ph -> ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) ) | 
						
							| 29 | 12 16 | ressbasss |  |-  ( Base ` ( CCfld |`s A ) ) C_ CC | 
						
							| 30 | 4 29 | eqsstrdi |  |-  ( ph -> ( Base ` F ) C_ CC ) | 
						
							| 31 | 1 30 | eqsstrid |  |-  ( ph -> K C_ CC ) | 
						
							| 32 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 33 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 34 | 32 33 | drngunz |  |-  ( F e. DivRing -> ( 1r ` F ) =/= ( 0g ` F ) ) | 
						
							| 35 | 3 34 | syl |  |-  ( ph -> ( 1r ` F ) =/= ( 0g ` F ) ) | 
						
							| 36 | 25 | fveq2d |  |-  ( ph -> ( 0g ` F ) = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 37 |  | ringgrp |  |-  ( CCfld e. Ring -> CCfld e. Grp ) | 
						
							| 38 | 27 37 | mp1i |  |-  ( ph -> CCfld e. Grp ) | 
						
							| 39 |  | ringgrp |  |-  ( ( CCfld |`s K ) e. Ring -> ( CCfld |`s K ) e. Grp ) | 
						
							| 40 | 26 39 | syl |  |-  ( ph -> ( CCfld |`s K ) e. Grp ) | 
						
							| 41 | 16 | issubg |  |-  ( K e. ( SubGrp ` CCfld ) <-> ( CCfld e. Grp /\ K C_ CC /\ ( CCfld |`s K ) e. Grp ) ) | 
						
							| 42 | 38 31 40 41 | syl3anbrc |  |-  ( ph -> K e. ( SubGrp ` CCfld ) ) | 
						
							| 43 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 44 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 45 | 43 44 | subg0 |  |-  ( K e. ( SubGrp ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 46 | 42 45 | syl |  |-  ( ph -> 0 = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 47 | 36 46 | eqtr4d |  |-  ( ph -> ( 0g ` F ) = 0 ) | 
						
							| 48 | 35 47 | neeqtrd |  |-  ( ph -> ( 1r ` F ) =/= 0 ) | 
						
							| 49 | 48 | neneqd |  |-  ( ph -> -. ( 1r ` F ) = 0 ) | 
						
							| 50 | 1 33 | ringidcl |  |-  ( F e. Ring -> ( 1r ` F ) e. K ) | 
						
							| 51 | 6 50 | syl |  |-  ( ph -> ( 1r ` F ) e. K ) | 
						
							| 52 | 31 51 | sseldd |  |-  ( ph -> ( 1r ` F ) e. CC ) | 
						
							| 53 | 52 | sqvald |  |-  ( ph -> ( ( 1r ` F ) ^ 2 ) = ( ( 1r ` F ) x. ( 1r ` F ) ) ) | 
						
							| 54 | 25 | fveq2d |  |-  ( ph -> ( 1r ` F ) = ( 1r ` ( CCfld |`s K ) ) ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ph -> ( ( 1r ` F ) x. ( 1r ` F ) ) = ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) ) | 
						
							| 56 | 25 | fveq2d |  |-  ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 57 | 1 56 | eqtrid |  |-  ( ph -> K = ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 58 | 51 57 | eleqtrd |  |-  ( ph -> ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 59 |  | eqid |  |-  ( Base ` ( CCfld |`s K ) ) = ( Base ` ( CCfld |`s K ) ) | 
						
							| 60 | 1 | fvexi |  |-  K e. _V | 
						
							| 61 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 62 | 43 61 | ressmulr |  |-  ( K e. _V -> x. = ( .r ` ( CCfld |`s K ) ) ) | 
						
							| 63 | 60 62 | ax-mp |  |-  x. = ( .r ` ( CCfld |`s K ) ) | 
						
							| 64 |  | eqid |  |-  ( 1r ` ( CCfld |`s K ) ) = ( 1r ` ( CCfld |`s K ) ) | 
						
							| 65 | 59 63 64 | ringlidm |  |-  ( ( ( CCfld |`s K ) e. Ring /\ ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) | 
						
							| 66 | 26 58 65 | syl2anc |  |-  ( ph -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) | 
						
							| 67 | 53 55 66 | 3eqtrd |  |-  ( ph -> ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) ) | 
						
							| 68 |  | sq01 |  |-  ( ( 1r ` F ) e. CC -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) | 
						
							| 69 | 52 68 | syl |  |-  ( ph -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) | 
						
							| 70 | 67 69 | mpbid |  |-  ( ph -> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) | 
						
							| 71 | 70 | ord |  |-  ( ph -> ( -. ( 1r ` F ) = 0 -> ( 1r ` F ) = 1 ) ) | 
						
							| 72 | 49 71 | mpd |  |-  ( ph -> ( 1r ` F ) = 1 ) | 
						
							| 73 | 72 51 | eqeltrrd |  |-  ( ph -> 1 e. K ) | 
						
							| 74 | 31 73 | jca |  |-  ( ph -> ( K C_ CC /\ 1 e. K ) ) | 
						
							| 75 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 76 | 16 75 | issubrg |  |-  ( K e. ( SubRing ` CCfld ) <-> ( ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) /\ ( K C_ CC /\ 1 e. K ) ) ) | 
						
							| 77 | 28 74 76 | sylanbrc |  |-  ( ph -> K e. ( SubRing ` CCfld ) ) | 
						
							| 78 | 25 20 77 | 3jca |  |-  ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) |