Step |
Hyp |
Ref |
Expression |
1 |
|
drngunz.z |
|- .0. = ( 0g ` R ) |
2 |
|
drngunz.u |
|- .1. = ( 1r ` R ) |
3 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
5 |
4 2
|
1unit |
|- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
6 |
3 5
|
syl |
|- ( R e. DivRing -> .1. e. ( Unit ` R ) ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
7 4 1
|
drngunit |
|- ( R e. DivRing -> ( .1. e. ( Unit ` R ) <-> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) ) ) |
9 |
6 8
|
mpbid |
|- ( R e. DivRing -> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) ) |
10 |
9
|
simprd |
|- ( R e. DivRing -> .1. =/= .0. ) |