Metamath Proof Explorer


Theorem drngunz

Description: A division ring's unit is different from its zero. (Contributed by NM, 8-Sep-2011)

Ref Expression
Hypotheses drngunz.z
|- .0. = ( 0g ` R )
drngunz.u
|- .1. = ( 1r ` R )
Assertion drngunz
|- ( R e. DivRing -> .1. =/= .0. )

Proof

Step Hyp Ref Expression
1 drngunz.z
 |-  .0. = ( 0g ` R )
2 drngunz.u
 |-  .1. = ( 1r ` R )
3 drngring
 |-  ( R e. DivRing -> R e. Ring )
4 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
5 4 2 1unit
 |-  ( R e. Ring -> .1. e. ( Unit ` R ) )
6 3 5 syl
 |-  ( R e. DivRing -> .1. e. ( Unit ` R ) )
7 eqid
 |-  ( Base ` R ) = ( Base ` R )
8 7 4 1 drngunit
 |-  ( R e. DivRing -> ( .1. e. ( Unit ` R ) <-> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) ) )
9 6 8 mpbid
 |-  ( R e. DivRing -> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) )
10 9 simprd
 |-  ( R e. DivRing -> .1. =/= .0. )