Metamath Proof Explorer


Theorem drngunz

Description: A division ring's unit is different from its zero. (Contributed by NM, 8-Sep-2011)

Ref Expression
Hypotheses drngunz.z 0 ˙ = 0 R
drngunz.u 1 ˙ = 1 R
Assertion drngunz R DivRing 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 drngunz.z 0 ˙ = 0 R
2 drngunz.u 1 ˙ = 1 R
3 drngring R DivRing R Ring
4 eqid Unit R = Unit R
5 4 2 1unit R Ring 1 ˙ Unit R
6 3 5 syl R DivRing 1 ˙ Unit R
7 eqid Base R = Base R
8 7 4 1 drngunit R DivRing 1 ˙ Unit R 1 ˙ Base R 1 ˙ 0 ˙
9 6 8 mpbid R DivRing 1 ˙ Base R 1 ˙ 0 ˙
10 9 simprd R DivRing 1 ˙ 0 ˙