Metamath Proof Explorer


Theorem drngunz

Description: A division ring's unity is different from its zero. (Contributed by NM, 8-Sep-2011)

Ref Expression
Hypotheses drngunz.z 0˙=0R
drngunz.u 1˙=1R
Assertion drngunz RDivRing1˙0˙

Proof

Step Hyp Ref Expression
1 drngunz.z 0˙=0R
2 drngunz.u 1˙=1R
3 drngring RDivRingRRing
4 eqid UnitR=UnitR
5 4 2 1unit RRing1˙UnitR
6 3 5 syl RDivRing1˙UnitR
7 eqid BaseR=BaseR
8 7 4 1 drngunit RDivRing1˙UnitR1˙BaseR1˙0˙
9 6 8 mpbid RDivRing1˙BaseR1˙0˙
10 9 simprd RDivRing1˙0˙