Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Definition and basic properties
drngunz
Next ⟩
drngid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
drngunz
Description:
A division ring's unit is different from its zero.
(Contributed by
NM
, 8-Sep-2011)
Ref
Expression
Hypotheses
drngunz.z
⊢
0
˙
=
0
R
drngunz.u
⊢
1
˙
=
1
R
Assertion
drngunz
⊢
R
∈
DivRing
→
1
˙
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
drngunz.z
⊢
0
˙
=
0
R
2
drngunz.u
⊢
1
˙
=
1
R
3
drngring
⊢
R
∈
DivRing
→
R
∈
Ring
4
eqid
⊢
Unit
⁡
R
=
Unit
⁡
R
5
4
2
1unit
⊢
R
∈
Ring
→
1
˙
∈
Unit
⁡
R
6
3
5
syl
⊢
R
∈
DivRing
→
1
˙
∈
Unit
⁡
R
7
eqid
⊢
Base
R
=
Base
R
8
7
4
1
drngunit
⊢
R
∈
DivRing
→
1
˙
∈
Unit
⁡
R
↔
1
˙
∈
Base
R
∧
1
˙
≠
0
˙
9
6
8
mpbid
⊢
R
∈
DivRing
→
1
˙
∈
Base
R
∧
1
˙
≠
0
˙
10
9
simprd
⊢
R
∈
DivRing
→
1
˙
≠
0
˙