Metamath Proof Explorer


Theorem jctil

Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993)

Ref Expression
Hypotheses jctil.1
|- ( ph -> ps )
jctil.2
|- ch
Assertion jctil
|- ( ph -> ( ch /\ ps ) )

Proof

Step Hyp Ref Expression
1 jctil.1
 |-  ( ph -> ps )
2 jctil.2
 |-  ch
3 2 a1i
 |-  ( ph -> ch )
4 3 1 jca
 |-  ( ph -> ( ch /\ ps ) )