Metamath Proof Explorer


Theorem jctir

Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993)

Ref Expression
Hypotheses jctil.1
|- ( ph -> ps )
jctil.2
|- ch
Assertion jctir
|- ( ph -> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 jctil.1
 |-  ( ph -> ps )
2 jctil.2
 |-  ch
3 2 a1i
 |-  ( ph -> ch )
4 1 3 jca
 |-  ( ph -> ( ps /\ ch ) )