Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jctil.1 | |- ( ph -> ps ) |
|
jctil.2 | |- ch |
||
Assertion | jctir | |- ( ph -> ( ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | |- ( ph -> ps ) |
|
2 | jctil.2 | |- ch |
|
3 | 2 | a1i | |- ( ph -> ch ) |
4 | 1 3 | jca | |- ( ph -> ( ps /\ ch ) ) |