Metamath Proof Explorer


Theorem jctir

Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993)

Ref Expression
Hypotheses jctil.1 ( 𝜑𝜓 )
jctil.2 𝜒
Assertion jctir ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 jctil.1 ( 𝜑𝜓 )
2 jctil.2 𝜒
3 2 a1i ( 𝜑𝜒 )
4 1 3 jca ( 𝜑 → ( 𝜓𝜒 ) )