| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsubrglem.k |  |-  K = ( Base ` F ) | 
						
							| 2 |  | cphsubrglem.1 |  |-  ( ph -> F = ( CCfld |`s A ) ) | 
						
							| 3 |  | cphsubrglem.2 |  |-  ( ph -> F e. DivRing ) | 
						
							| 4 | 1 2 3 | cphsubrglem |  |-  ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) | 
						
							| 5 | 4 | simp3d |  |-  ( ph -> K e. ( SubRing ` CCfld ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> K e. ( SubRing ` CCfld ) ) | 
						
							| 7 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 8 | 7 | subrgss |  |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> K C_ CC ) | 
						
							| 10 |  | simp2 |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. K ) | 
						
							| 11 | 9 10 | sseldd |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. CC ) | 
						
							| 12 |  | simp3 |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X =/= 0 ) | 
						
							| 13 |  | cnfldinv |  |-  ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) | 
						
							| 15 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 16 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 17 | 15 16 | subrg0 |  |-  ( K e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 18 | 6 17 | syl |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 19 | 4 | simp1d |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> F = ( CCfld |`s K ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( 0g ` F ) = ( 0g ` ( CCfld |`s K ) ) ) | 
						
							| 22 | 18 21 | eqtr4d |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> 0 = ( 0g ` F ) ) | 
						
							| 23 | 12 22 | neeqtrd |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X =/= ( 0g ` F ) ) | 
						
							| 24 |  | eldifsn |  |-  ( X e. ( K \ { ( 0g ` F ) } ) <-> ( X e. K /\ X =/= ( 0g ` F ) ) ) | 
						
							| 25 | 10 23 24 | sylanbrc |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. ( K \ { ( 0g ` F ) } ) ) | 
						
							| 26 | 3 | 3ad2ant1 |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> F e. DivRing ) | 
						
							| 27 |  | eqid |  |-  ( Unit ` F ) = ( Unit ` F ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 29 | 1 27 28 | isdrng |  |-  ( F e. DivRing <-> ( F e. Ring /\ ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) ) | 
						
							| 30 | 29 | simprbi |  |-  ( F e. DivRing -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) | 
						
							| 31 | 26 30 | syl |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) | 
						
							| 32 | 20 | fveq2d |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( Unit ` F ) = ( Unit ` ( CCfld |`s K ) ) ) | 
						
							| 33 | 31 32 | eqtr3d |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( K \ { ( 0g ` F ) } ) = ( Unit ` ( CCfld |`s K ) ) ) | 
						
							| 34 | 25 33 | eleqtrd |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. ( Unit ` ( CCfld |`s K ) ) ) | 
						
							| 35 |  | eqid |  |-  ( Unit ` CCfld ) = ( Unit ` CCfld ) | 
						
							| 36 |  | eqid |  |-  ( Unit ` ( CCfld |`s K ) ) = ( Unit ` ( CCfld |`s K ) ) | 
						
							| 37 |  | eqid |  |-  ( invr ` CCfld ) = ( invr ` CCfld ) | 
						
							| 38 | 15 35 36 37 | subrgunit |  |-  ( K e. ( SubRing ` CCfld ) -> ( X e. ( Unit ` ( CCfld |`s K ) ) <-> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) ) | 
						
							| 39 | 6 38 | syl |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( X e. ( Unit ` ( CCfld |`s K ) ) <-> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) ) | 
						
							| 40 | 34 39 | mpbid |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) | 
						
							| 41 | 40 | simp3d |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) e. K ) | 
						
							| 42 | 14 41 | eqeltrrd |  |-  ( ( ph /\ X e. K /\ X =/= 0 ) -> ( 1 / X ) e. K ) |