| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
| 2 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
| 3 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 4 |
3
|
eqcomd |
|- ( A e. CC -> A = ( A x. 1 ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
mulcan |
|- ( ( A e. CC /\ 1 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
| 9 |
7 8
|
mp3an2 |
|- ( ( A e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
| 10 |
9
|
anabss5 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
| 11 |
6 10
|
bitrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> A = 1 ) ) |
| 12 |
11
|
biimpd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A -> A = 1 ) ) |
| 13 |
12
|
impancom |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A =/= 0 -> A = 1 ) ) |
| 14 |
1 13
|
biimtrrid |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( -. A = 0 -> A = 1 ) ) |
| 15 |
14
|
orrd |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A = 0 \/ A = 1 ) ) |
| 16 |
15
|
ex |
|- ( A e. CC -> ( ( A ^ 2 ) = A -> ( A = 0 \/ A = 1 ) ) ) |
| 17 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 18 |
|
oveq1 |
|- ( A = 0 -> ( A ^ 2 ) = ( 0 ^ 2 ) ) |
| 19 |
|
id |
|- ( A = 0 -> A = 0 ) |
| 20 |
17 18 19
|
3eqtr4a |
|- ( A = 0 -> ( A ^ 2 ) = A ) |
| 21 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 22 |
|
oveq1 |
|- ( A = 1 -> ( A ^ 2 ) = ( 1 ^ 2 ) ) |
| 23 |
|
id |
|- ( A = 1 -> A = 1 ) |
| 24 |
21 22 23
|
3eqtr4a |
|- ( A = 1 -> ( A ^ 2 ) = A ) |
| 25 |
20 24
|
jaoi |
|- ( ( A = 0 \/ A = 1 ) -> ( A ^ 2 ) = A ) |
| 26 |
16 25
|
impbid1 |
|- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A = 0 \/ A = 1 ) ) ) |