Metamath Proof Explorer


Theorem subrgmcl

Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subrgmcl.p
|- .x. = ( .r ` R )
Assertion subrgmcl
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A )

Proof

Step Hyp Ref Expression
1 subrgmcl.p
 |-  .x. = ( .r ` R )
2 eqid
 |-  ( R |`s A ) = ( R |`s A )
3 2 subrgring
 |-  ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring )
4 3 3ad2ant1
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( R |`s A ) e. Ring )
5 simp2
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> X e. A )
6 2 subrgbas
 |-  ( A e. ( SubRing ` R ) -> A = ( Base ` ( R |`s A ) ) )
7 6 3ad2ant1
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> A = ( Base ` ( R |`s A ) ) )
8 5 7 eleqtrd
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> X e. ( Base ` ( R |`s A ) ) )
9 simp3
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> Y e. A )
10 9 7 eleqtrd
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> Y e. ( Base ` ( R |`s A ) ) )
11 eqid
 |-  ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) )
12 eqid
 |-  ( .r ` ( R |`s A ) ) = ( .r ` ( R |`s A ) )
13 11 12 ringcl
 |-  ( ( ( R |`s A ) e. Ring /\ X e. ( Base ` ( R |`s A ) ) /\ Y e. ( Base ` ( R |`s A ) ) ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) )
14 4 8 10 13 syl3anc
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) )
15 2 1 ressmulr
 |-  ( A e. ( SubRing ` R ) -> .x. = ( .r ` ( R |`s A ) ) )
16 15 3ad2ant1
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> .x. = ( .r ` ( R |`s A ) ) )
17 16 oveqd
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) = ( X ( .r ` ( R |`s A ) ) Y ) )
18 14 17 7 3eltr4d
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A )