| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgsubm.1 |
|- M = ( mulGrp ` R ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
2
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 5 |
4
|
subrg1cl |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
| 6 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 7 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
| 8 |
7 1
|
mgpress |
|- ( ( R e. Ring /\ A e. ( SubRing ` R ) ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
| 9 |
6 8
|
mpancom |
|- ( A e. ( SubRing ` R ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
| 10 |
7
|
subrgring |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
| 11 |
|
eqid |
|- ( mulGrp ` ( R |`s A ) ) = ( mulGrp ` ( R |`s A ) ) |
| 12 |
11
|
ringmgp |
|- ( ( R |`s A ) e. Ring -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
| 13 |
10 12
|
syl |
|- ( A e. ( SubRing ` R ) -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
| 14 |
9 13
|
eqeltrd |
|- ( A e. ( SubRing ` R ) -> ( M |`s A ) e. Mnd ) |
| 15 |
1
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
| 16 |
1 2
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
| 17 |
1 4
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
| 18 |
|
eqid |
|- ( M |`s A ) = ( M |`s A ) |
| 19 |
16 17 18
|
issubm2 |
|- ( M e. Mnd -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
| 20 |
6 15 19
|
3syl |
|- ( A e. ( SubRing ` R ) -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
| 21 |
3 5 14 20
|
mpbir3and |
|- ( A e. ( SubRing ` R ) -> A e. ( SubMnd ` M ) ) |