| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgsubm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 3 |
2
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 5 |
4
|
subrg1cl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
| 6 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
| 8 |
7 1
|
mgpress |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 9 |
6 8
|
mpancom |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 10 |
7
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 12 |
11
|
ringmgp |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
| 13 |
10 12
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
| 14 |
9 13
|
eqeltrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) |
| 15 |
1
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 16 |
1 2
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 17 |
1 4
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 18 |
|
eqid |
⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) |
| 19 |
16 17 18
|
issubm2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 20 |
6 15 19
|
3syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 21 |
3 5 14 20
|
mpbir3and |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) |