Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgsubm.1 | |
|
Assertion | subrgsubm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubm.1 | |
|
2 | eqid | |
|
3 | 2 | subrgss | |
4 | eqid | |
|
5 | 4 | subrg1cl | |
6 | subrgrcl | |
|
7 | eqid | |
|
8 | 7 1 | mgpress | |
9 | 6 8 | mpancom | |
10 | 7 | subrgring | |
11 | eqid | |
|
12 | 11 | ringmgp | |
13 | 10 12 | syl | |
14 | 9 13 | eqeltrd | |
15 | 1 | ringmgp | |
16 | 1 2 | mgpbas | |
17 | 1 4 | ringidval | |
18 | eqid | |
|
19 | 16 17 18 | issubm2 | |
20 | 6 15 19 | 3syl | |
21 | 3 5 14 20 | mpbir3and | |