Metamath Proof Explorer


Theorem subrgsubm

Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis subrgsubm.1 M=mulGrpR
Assertion subrgsubm ASubRingRASubMndM

Proof

Step Hyp Ref Expression
1 subrgsubm.1 M=mulGrpR
2 eqid BaseR=BaseR
3 2 subrgss ASubRingRABaseR
4 eqid 1R=1R
5 4 subrg1cl ASubRingR1RA
6 subrgrcl ASubRingRRRing
7 eqid R𝑠A=R𝑠A
8 7 1 mgpress RRingASubRingRM𝑠A=mulGrpR𝑠A
9 6 8 mpancom ASubRingRM𝑠A=mulGrpR𝑠A
10 7 subrgring ASubRingRR𝑠ARing
11 eqid mulGrpR𝑠A=mulGrpR𝑠A
12 11 ringmgp R𝑠ARingmulGrpR𝑠AMnd
13 10 12 syl ASubRingRmulGrpR𝑠AMnd
14 9 13 eqeltrd ASubRingRM𝑠AMnd
15 1 ringmgp RRingMMnd
16 1 2 mgpbas BaseR=BaseM
17 1 4 ringidval 1R=0M
18 eqid M𝑠A=M𝑠A
19 16 17 18 issubm2 MMndASubMndMABaseR1RAM𝑠AMnd
20 6 15 19 3syl ASubRingRASubMndMABaseR1RAM𝑠AMnd
21 3 5 14 20 mpbir3and ASubRingRASubMndM