Metamath Proof Explorer


Theorem subrg1cl

Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrg1cl.a 1˙=1R
Assertion subrg1cl ASubRingR1˙A

Proof

Step Hyp Ref Expression
1 subrg1cl.a 1˙=1R
2 eqid BaseR=BaseR
3 2 1 issubrg ASubRingRRRingR𝑠ARingABaseR1˙A
4 3 simprbi ASubRingRABaseR1˙A
5 4 simprd ASubRingR1˙A