Metamath Proof Explorer


Theorem subrgbas

Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgbas.b S=R𝑠A
Assertion subrgbas ASubRingRA=BaseS

Proof

Step Hyp Ref Expression
1 subrgbas.b S=R𝑠A
2 subrgsubg ASubRingRASubGrpR
3 1 subgbas ASubGrpRA=BaseS
4 2 3 syl ASubRingRA=BaseS