Metamath Proof Explorer


Theorem subrgss

Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgss.1 B=BaseR
Assertion subrgss ASubRingRAB

Proof

Step Hyp Ref Expression
1 subrgss.1 B=BaseR
2 eqid 1R=1R
3 1 2 issubrg ASubRingRRRingR𝑠ARingAB1RA
4 3 simprbi ASubRingRAB1RA
5 4 simpld ASubRingRAB