| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cphsca.k |  |-  K = ( Base ` F ) | 
						
							| 3 | 1 2 | cphsca |  |-  ( W e. CPreHil -> F = ( CCfld |`s K ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( W e. CPreHil -> ( *r ` F ) = ( *r ` ( CCfld |`s K ) ) ) | 
						
							| 5 | 2 | fvexi |  |-  K e. _V | 
						
							| 6 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 7 |  | cnfldcj |  |-  * = ( *r ` CCfld ) | 
						
							| 8 | 6 7 | ressstarv |  |-  ( K e. _V -> * = ( *r ` ( CCfld |`s K ) ) ) | 
						
							| 9 | 5 8 | ax-mp |  |-  * = ( *r ` ( CCfld |`s K ) ) | 
						
							| 10 | 4 9 | eqtr4di |  |-  ( W e. CPreHil -> ( *r ` F ) = * ) | 
						
							| 11 | 10 | adantr |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( *r ` F ) = * ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) = ( * ` A ) ) | 
						
							| 13 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 14 | 1 | phlsrng |  |-  ( W e. PreHil -> F e. *Ring ) | 
						
							| 15 | 13 14 | syl |  |-  ( W e. CPreHil -> F e. *Ring ) | 
						
							| 16 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 17 | 16 2 | srngcl |  |-  ( ( F e. *Ring /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) | 
						
							| 18 | 15 17 | sylan |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) | 
						
							| 19 | 12 18 | eqeltrrd |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |