| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cphsca.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | sqrtf |  |-  sqrt : CC --> CC | 
						
							| 4 |  | ffn |  |-  ( sqrt : CC --> CC -> sqrt Fn CC ) | 
						
							| 5 | 3 4 | ax-mp |  |-  sqrt Fn CC | 
						
							| 6 |  | inss2 |  |-  ( K i^i ( 0 [,) +oo ) ) C_ ( 0 [,) +oo ) | 
						
							| 7 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 8 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 9 | 7 8 | sstri |  |-  ( 0 [,) +oo ) C_ CC | 
						
							| 10 | 6 9 | sstri |  |-  ( K i^i ( 0 [,) +oo ) ) C_ CC | 
						
							| 11 |  | simp1 |  |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. K ) | 
						
							| 12 |  | elrege0 |  |-  ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 13 | 12 | biimpri |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. ( 0 [,) +oo ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. ( 0 [,) +oo ) ) | 
						
							| 15 | 11 14 | elind |  |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. ( K i^i ( 0 [,) +oo ) ) ) | 
						
							| 16 |  | fnfvima |  |-  ( ( sqrt Fn CC /\ ( K i^i ( 0 [,) +oo ) ) C_ CC /\ A e. ( K i^i ( 0 [,) +oo ) ) ) -> ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) | 
						
							| 17 | 5 10 15 16 | mp3an12i |  |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 19 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 20 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 21 | 18 19 20 1 2 | iscph |  |-  ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ ( norm ` W ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) ) | 
						
							| 22 | 21 | simp2bi |  |-  ( W e. CPreHil -> ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K ) | 
						
							| 23 | 22 | sselda |  |-  ( ( W e. CPreHil /\ ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) -> ( sqrt ` A ) e. K ) | 
						
							| 24 | 17 23 | sylan2 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ A e. RR /\ 0 <_ A ) ) -> ( sqrt ` A ) e. K ) |