Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elind.1 | |- ( ph -> X e. A ) |
|
| elind.2 | |- ( ph -> X e. B ) |
||
| Assertion | elind | |- ( ph -> X e. ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | |- ( ph -> X e. A ) |
|
| 2 | elind.2 | |- ( ph -> X e. B ) |
|
| 3 | elin | |- ( X e. ( A i^i B ) <-> ( X e. A /\ X e. B ) ) |
|
| 4 | 1 2 3 | sylanbrc | |- ( ph -> X e. ( A i^i B ) ) |