Metamath Proof Explorer
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
elind.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
|
elind.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
elind |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elind.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
2 |
|
elind.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
3 |
|
elin |
⊢ ( 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) |
4 |
1 2 3
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |