Metamath Proof Explorer


Theorem elind

Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses elind.1 ( 𝜑𝑋𝐴 )
elind.2 ( 𝜑𝑋𝐵 )
Assertion elind ( 𝜑𝑋 ∈ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 elind.1 ( 𝜑𝑋𝐴 )
2 elind.2 ( 𝜑𝑋𝐵 )
3 elin ( 𝑋 ∈ ( 𝐴𝐵 ) ↔ ( 𝑋𝐴𝑋𝐵 ) )
4 1 2 3 sylanbrc ( 𝜑𝑋 ∈ ( 𝐴𝐵 ) )