| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
| 2 |
|
cphsca.k |
|- K = ( Base ` F ) |
| 3 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 5 |
4
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 6 |
3 5
|
syl |
|- ( W e. CPreHil -> K C_ CC ) |
| 7 |
6
|
sselda |
|- ( ( W e. CPreHil /\ A e. K ) -> A e. CC ) |
| 8 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 10 |
|
simpl |
|- ( ( W e. CPreHil /\ A e. K ) -> W e. CPreHil ) |
| 11 |
3
|
adantr |
|- ( ( W e. CPreHil /\ A e. K ) -> K e. ( SubRing ` CCfld ) ) |
| 12 |
|
simpr |
|- ( ( W e. CPreHil /\ A e. K ) -> A e. K ) |
| 13 |
1 2
|
cphcjcl |
|- ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |
| 14 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 15 |
14
|
subrgmcl |
|- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( * ` A ) e. K ) -> ( A x. ( * ` A ) ) e. K ) |
| 16 |
11 12 13 15
|
syl3anc |
|- ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. K ) |
| 17 |
7
|
cjmulrcld |
|- ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. RR ) |
| 18 |
7
|
cjmulge0d |
|- ( ( W e. CPreHil /\ A e. K ) -> 0 <_ ( A x. ( * ` A ) ) ) |
| 19 |
1 2
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( ( A x. ( * ` A ) ) e. K /\ ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) |
| 20 |
10 16 17 18 19
|
syl13anc |
|- ( ( W e. CPreHil /\ A e. K ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) |
| 21 |
9 20
|
eqeltrd |
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K ) |