| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 5 |
4
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ ) |
| 7 |
6
|
sselda |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ℂ ) |
| 8 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝑊 ∈ ℂPreHil ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
| 13 |
1 2
|
cphcjcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |
| 14 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 15 |
14
|
subrgmcl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 16 |
11 12 13 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 17 |
7
|
cjmulrcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 |
7
|
cjmulge0d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 19 |
1 2
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
| 20 |
10 16 17 18 19
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
| 21 |
9 20
|
eqeltrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |