Description: The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphsca.f | β’ πΉ = ( Scalar β π ) | |
cphsca.k | β’ πΎ = ( Base β πΉ ) | ||
Assertion | cphreccl | β’ ( ( π β βPreHil β§ π΄ β πΎ β§ π΄ β 0 ) β ( 1 / π΄ ) β πΎ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | β’ πΉ = ( Scalar β π ) | |
2 | cphsca.k | β’ πΎ = ( Base β πΉ ) | |
3 | 1 2 | cphsca | β’ ( π β βPreHil β πΉ = ( βfld βΎs πΎ ) ) |
4 | cphlvec | β’ ( π β βPreHil β π β LVec ) | |
5 | 1 | lvecdrng | β’ ( π β LVec β πΉ β DivRing ) |
6 | 4 5 | syl | β’ ( π β βPreHil β πΉ β DivRing ) |
7 | 2 3 6 | cphreccllem | β’ ( ( π β βPreHil β§ π΄ β πΎ β§ π΄ β 0 ) β ( 1 / π΄ ) β πΎ ) |