Metamath Proof Explorer


Definition df-cph

Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Assertion df-cph CPreHil = w PreHil NrmMod | [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccph class CPreHil
1 vw setvar w
2 cphl class PreHil
3 cnlm class NrmMod
4 2 3 cin class PreHil NrmMod
5 csca class Scalar
6 1 cv setvar w
7 6 5 cfv class Scalar w
8 vf setvar f
9 cbs class Base
10 8 cv setvar f
11 10 9 cfv class Base f
12 vk setvar k
13 ccnfld class fld
14 cress class 𝑠
15 12 cv setvar k
16 13 15 14 co class fld 𝑠 k
17 10 16 wceq wff f = fld 𝑠 k
18 csqrt class
19 cc0 class 0
20 cico class .
21 cpnf class +∞
22 19 21 20 co class 0 +∞
23 15 22 cin class k 0 +∞
24 18 23 cima class k 0 +∞
25 24 15 wss wff k 0 +∞ k
26 cnm class norm
27 6 26 cfv class norm w
28 vx setvar x
29 6 9 cfv class Base w
30 28 cv setvar x
31 cip class 𝑖
32 6 31 cfv class 𝑖 w
33 30 30 32 co class x 𝑖 w x
34 33 18 cfv class x 𝑖 w x
35 28 29 34 cmpt class x Base w x 𝑖 w x
36 27 35 wceq wff norm w = x Base w x 𝑖 w x
37 17 25 36 w3a wff f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x
38 37 12 11 wsbc wff [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x
39 38 8 7 wsbc wff [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x
40 39 1 4 crab class w PreHil NrmMod | [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x
41 0 40 wceq wff CPreHil = w PreHil NrmMod | [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x