| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccph |  |-  CPreHil | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cphl |  |-  PreHil | 
						
							| 3 |  | cnlm |  |-  NrmMod | 
						
							| 4 | 2 3 | cin |  |-  ( PreHil i^i NrmMod ) | 
						
							| 5 |  | csca |  |-  Scalar | 
						
							| 6 | 1 | cv |  |-  w | 
						
							| 7 | 6 5 | cfv |  |-  ( Scalar ` w ) | 
						
							| 8 |  | vf |  |-  f | 
						
							| 9 |  | cbs |  |-  Base | 
						
							| 10 | 8 | cv |  |-  f | 
						
							| 11 | 10 9 | cfv |  |-  ( Base ` f ) | 
						
							| 12 |  | vk |  |-  k | 
						
							| 13 |  | ccnfld |  |-  CCfld | 
						
							| 14 |  | cress |  |-  |`s | 
						
							| 15 | 12 | cv |  |-  k | 
						
							| 16 | 13 15 14 | co |  |-  ( CCfld |`s k ) | 
						
							| 17 | 10 16 | wceq |  |-  f = ( CCfld |`s k ) | 
						
							| 18 |  | csqrt |  |-  sqrt | 
						
							| 19 |  | cc0 |  |-  0 | 
						
							| 20 |  | cico |  |-  [,) | 
						
							| 21 |  | cpnf |  |-  +oo | 
						
							| 22 | 19 21 20 | co |  |-  ( 0 [,) +oo ) | 
						
							| 23 | 15 22 | cin |  |-  ( k i^i ( 0 [,) +oo ) ) | 
						
							| 24 | 18 23 | cima |  |-  ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) | 
						
							| 25 | 24 15 | wss |  |-  ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k | 
						
							| 26 |  | cnm |  |-  norm | 
						
							| 27 | 6 26 | cfv |  |-  ( norm ` w ) | 
						
							| 28 |  | vx |  |-  x | 
						
							| 29 | 6 9 | cfv |  |-  ( Base ` w ) | 
						
							| 30 | 28 | cv |  |-  x | 
						
							| 31 |  | cip |  |-  .i | 
						
							| 32 | 6 31 | cfv |  |-  ( .i ` w ) | 
						
							| 33 | 30 30 32 | co |  |-  ( x ( .i ` w ) x ) | 
						
							| 34 | 33 18 | cfv |  |-  ( sqrt ` ( x ( .i ` w ) x ) ) | 
						
							| 35 | 28 29 34 | cmpt |  |-  ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) | 
						
							| 36 | 27 35 | wceq |  |-  ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) | 
						
							| 37 | 17 25 36 | w3a |  |-  ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) | 
						
							| 38 | 37 12 11 | wsbc |  |-  [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) | 
						
							| 39 | 38 8 7 | wsbc |  |-  [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) | 
						
							| 40 | 39 1 4 | crab |  |-  { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } | 
						
							| 41 | 0 40 | wceq |  |-  CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |