Metamath Proof Explorer


Definition df-cph

Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Assertion df-cph CPreHil=wPreHilNrmMod|[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccph classCPreHil
1 vw setvarw
2 cphl classPreHil
3 cnlm classNrmMod
4 2 3 cin classPreHilNrmMod
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 vf setvarf
9 cbs classBase
10 8 cv setvarf
11 10 9 cfv classBasef
12 vk setvark
13 ccnfld classfld
14 cress class𝑠
15 12 cv setvark
16 13 15 14 co classfld𝑠k
17 10 16 wceq wfff=fld𝑠k
18 csqrt class
19 cc0 class0
20 cico class.
21 cpnf class+∞
22 19 21 20 co class0+∞
23 15 22 cin classk0+∞
24 18 23 cima classk0+∞
25 24 15 wss wffk0+∞k
26 cnm classnorm
27 6 26 cfv classnormw
28 vx setvarx
29 6 9 cfv classBasew
30 28 cv setvarx
31 cip class𝑖
32 6 31 cfv class𝑖w
33 30 30 32 co classx𝑖wx
34 33 18 cfv classx𝑖wx
35 28 29 34 cmpt classxBasewx𝑖wx
36 27 35 wceq wffnormw=xBasewx𝑖wx
37 17 25 36 w3a wfff=fld𝑠kk0+∞knormw=xBasewx𝑖wx
38 37 12 11 wsbc wff[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx
39 38 8 7 wsbc wff[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx
40 39 1 4 crab classwPreHilNrmMod|[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx
41 0 40 wceq wffCPreHil=wPreHilNrmMod|[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx