Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccph | |
|
1 | vw | |
|
2 | cphl | |
|
3 | cnlm | |
|
4 | 2 3 | cin | |
5 | csca | |
|
6 | 1 | cv | |
7 | 6 5 | cfv | |
8 | vf | |
|
9 | cbs | |
|
10 | 8 | cv | |
11 | 10 9 | cfv | |
12 | vk | |
|
13 | ccnfld | |
|
14 | cress | |
|
15 | 12 | cv | |
16 | 13 15 14 | co | |
17 | 10 16 | wceq | |
18 | csqrt | |
|
19 | cc0 | |
|
20 | cico | |
|
21 | cpnf | |
|
22 | 19 21 20 | co | |
23 | 15 22 | cin | |
24 | 18 23 | cima | |
25 | 24 15 | wss | |
26 | cnm | |
|
27 | 6 26 | cfv | |
28 | vx | |
|
29 | 6 9 | cfv | |
30 | 28 | cv | |
31 | cip | |
|
32 | 6 31 | cfv | |
33 | 30 30 32 | co | |
34 | 33 18 | cfv | |
35 | 28 29 34 | cmpt | |
36 | 27 35 | wceq | |
37 | 17 25 36 | w3a | |
38 | 37 12 11 | wsbc | |
39 | 38 8 7 | wsbc | |
40 | 39 1 4 | crab | |
41 | 0 40 | wceq | |