Metamath Proof Explorer


Theorem absge0d

Description: Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φA
Assertion absge0d φ0A

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 absge0 A0A
3 1 2 syl φ0A