Step |
Hyp |
Ref |
Expression |
1 |
|
iscph.v |
β’ π = ( Base β π ) |
2 |
|
iscph.h |
β’ , = ( Β·π β π ) |
3 |
|
iscph.n |
β’ π = ( norm β π ) |
4 |
|
iscph.f |
β’ πΉ = ( Scalar β π ) |
5 |
|
iscph.k |
β’ πΎ = ( Base β πΉ ) |
6 |
|
elin |
β’ ( π β ( PreHil β© NrmMod ) β ( π β PreHil β§ π β NrmMod ) ) |
7 |
6
|
anbi1i |
β’ ( ( π β ( PreHil β© NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) β ( ( π β PreHil β§ π β NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) ) |
8 |
|
df-3an |
β’ ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β ( ( π β PreHil β§ π β NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) ) |
9 |
7 8
|
bitr4i |
β’ ( ( π β ( PreHil β© NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) β ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) ) |
10 |
9
|
anbi1i |
β’ ( ( ( π β ( PreHil β© NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) β ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) |
11 |
|
fvexd |
β’ ( π€ = π β ( Scalar β π€ ) β V ) |
12 |
|
fvexd |
β’ ( ( π€ = π β§ π = ( Scalar β π€ ) ) β ( Base β π ) β V ) |
13 |
|
simplr |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β π = ( Scalar β π€ ) ) |
14 |
|
simpll |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β π€ = π ) |
15 |
14
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Scalar β π€ ) = ( Scalar β π ) ) |
16 |
15 4
|
eqtr4di |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Scalar β π€ ) = πΉ ) |
17 |
13 16
|
eqtrd |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β π = πΉ ) |
18 |
|
simpr |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β π = ( Base β π ) ) |
19 |
17
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Base β π ) = ( Base β πΉ ) ) |
20 |
19 5
|
eqtr4di |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Base β π ) = πΎ ) |
21 |
18 20
|
eqtrd |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β π = πΎ ) |
22 |
21
|
oveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( βfld βΎs π ) = ( βfld βΎs πΎ ) ) |
23 |
17 22
|
eqeq12d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( π = ( βfld βΎs π ) β πΉ = ( βfld βΎs πΎ ) ) ) |
24 |
21
|
ineq1d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( π β© ( 0 [,) +β ) ) = ( πΎ β© ( 0 [,) +β ) ) ) |
25 |
24
|
imaeq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( β β ( π β© ( 0 [,) +β ) ) ) = ( β β ( πΎ β© ( 0 [,) +β ) ) ) ) |
26 |
25 21
|
sseq12d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( ( β β ( π β© ( 0 [,) +β ) ) ) β π β ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ ) ) |
27 |
14
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( norm β π€ ) = ( norm β π ) ) |
28 |
27 3
|
eqtr4di |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( norm β π€ ) = π ) |
29 |
14
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Base β π€ ) = ( Base β π ) ) |
30 |
29 1
|
eqtr4di |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Base β π€ ) = π ) |
31 |
14
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Β·π β π€ ) = ( Β·π β π ) ) |
32 |
31 2
|
eqtr4di |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( Β·π β π€ ) = , ) |
33 |
32
|
oveqd |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( π₯ ( Β·π β π€ ) π₯ ) = ( π₯ , π₯ ) ) |
34 |
33
|
fveq2d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) = ( β β ( π₯ , π₯ ) ) ) |
35 |
30 34
|
mpteq12dv |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |
36 |
28 35
|
eqeq12d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) β π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) |
37 |
23 26 36
|
3anbi123d |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( ( π = ( βfld βΎs π ) β§ ( β β ( π β© ( 0 [,) +β ) ) ) β π β§ ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) β ( πΉ = ( βfld βΎs πΎ ) β§ ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) |
38 |
|
3anass |
β’ ( ( πΉ = ( βfld βΎs πΎ ) β§ ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) β ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) |
39 |
37 38
|
bitrdi |
β’ ( ( ( π€ = π β§ π = ( Scalar β π€ ) ) β§ π = ( Base β π ) ) β ( ( π = ( βfld βΎs π ) β§ ( β β ( π β© ( 0 [,) +β ) ) ) β π β§ ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) β ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) ) |
40 |
12 39
|
sbcied |
β’ ( ( π€ = π β§ π = ( Scalar β π€ ) ) β ( [ ( Base β π ) / π ] ( π = ( βfld βΎs π ) β§ ( β β ( π β© ( 0 [,) +β ) ) ) β π β§ ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) β ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) ) |
41 |
11 40
|
sbcied |
β’ ( π€ = π β ( [ ( Scalar β π€ ) / π ] [ ( Base β π ) / π ] ( π = ( βfld βΎs π ) β§ ( β β ( π β© ( 0 [,) +β ) ) ) β π β§ ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) β ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) ) |
42 |
|
df-cph |
β’ βPreHil = { π€ β ( PreHil β© NrmMod ) β£ [ ( Scalar β π€ ) / π ] [ ( Base β π ) / π ] ( π = ( βfld βΎs π ) β§ ( β β ( π β© ( 0 [,) +β ) ) ) β π β§ ( norm β π€ ) = ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) } |
43 |
41 42
|
elrab2 |
β’ ( π β βPreHil β ( π β ( PreHil β© NrmMod ) β§ ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) ) |
44 |
|
anass |
β’ ( ( ( π β ( PreHil β© NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) β ( π β ( PreHil β© NrmMod ) β§ ( πΉ = ( βfld βΎs πΎ ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) ) |
45 |
43 44
|
bitr4i |
β’ ( π β βPreHil β ( ( π β ( PreHil β© NrmMod ) β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) |
46 |
|
3anass |
β’ ( ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) β ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) ) |
47 |
10 45 46
|
3bitr4i |
β’ ( π β βPreHil β ( ( π β PreHil β§ π β NrmMod β§ πΉ = ( βfld βΎs πΎ ) ) β§ ( β β ( πΎ β© ( 0 [,) +β ) ) ) β πΎ β§ π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) |