Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
β’ π = ( Base β π ) |
2 |
|
nmsq.h |
β’ , = ( Β·π β π ) |
3 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
4 |
|
eqid |
β’ ( Base β ( Scalar β π ) ) = ( Base β ( Scalar β π ) ) |
5 |
3 4
|
cphsubrg |
β’ ( π β βPreHil β ( Base β ( Scalar β π ) ) β ( SubRing β βfld ) ) |
6 |
|
cnfldbas |
β’ β = ( Base β βfld ) |
7 |
6
|
subrgss |
β’ ( ( Base β ( Scalar β π ) ) β ( SubRing β βfld ) β ( Base β ( Scalar β π ) ) β β ) |
8 |
5 7
|
syl |
β’ ( π β βPreHil β ( Base β ( Scalar β π ) ) β β ) |
9 |
8
|
3ad2ant1 |
β’ ( ( π β βPreHil β§ π΄ β π β§ π΅ β π ) β ( Base β ( Scalar β π ) ) β β ) |
10 |
|
cphphl |
β’ ( π β βPreHil β π β PreHil ) |
11 |
3 2 1 4
|
ipcl |
β’ ( ( π β PreHil β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) β ( Base β ( Scalar β π ) ) ) |
12 |
10 11
|
syl3an1 |
β’ ( ( π β βPreHil β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) β ( Base β ( Scalar β π ) ) ) |
13 |
9 12
|
sseldd |
β’ ( ( π β βPreHil β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) β β ) |