Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphnmval.n |
β’ π = ( norm β πΊ ) |
3 |
|
tcphnmval.v |
β’ π = ( Base β π ) |
4 |
|
tcphnmval.h |
β’ , = ( Β·π β π ) |
5 |
1 2 3 4
|
tchnmfval |
β’ ( π β Grp β π = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |
6 |
5
|
fveq1d |
β’ ( π β Grp β ( π β π ) = ( ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) β π ) ) |
7 |
|
oveq12 |
β’ ( ( π₯ = π β§ π₯ = π ) β ( π₯ , π₯ ) = ( π , π ) ) |
8 |
7
|
anidms |
β’ ( π₯ = π β ( π₯ , π₯ ) = ( π , π ) ) |
9 |
8
|
fveq2d |
β’ ( π₯ = π β ( β β ( π₯ , π₯ ) ) = ( β β ( π , π ) ) ) |
10 |
|
eqid |
β’ ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) |
11 |
|
fvex |
β’ ( β β ( π , π ) ) β V |
12 |
9 10 11
|
fvmpt |
β’ ( π β π β ( ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) β π ) = ( β β ( π , π ) ) ) |
13 |
6 12
|
sylan9eq |
β’ ( ( π β Grp β§ π β π ) β ( π β π ) = ( β β ( π , π ) ) ) |