Metamath Proof Explorer


Theorem tcphnmval

Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
tcphnmval.n ⊒ 𝑁 = ( norm β€˜ 𝐺 )
tcphnmval.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
tcphnmval.h ⊒ , = ( ·𝑖 β€˜ π‘Š )
Assertion tcphnmval ( ( π‘Š ∈ Grp ∧ 𝑋 ∈ 𝑉 ) β†’ ( 𝑁 β€˜ 𝑋 ) = ( √ β€˜ ( 𝑋 , 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
2 tcphnmval.n ⊒ 𝑁 = ( norm β€˜ 𝐺 )
3 tcphnmval.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
4 tcphnmval.h ⊒ , = ( ·𝑖 β€˜ π‘Š )
5 1 2 3 4 tchnmfval ⊒ ( π‘Š ∈ Grp β†’ 𝑁 = ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ , π‘₯ ) ) ) )
6 5 fveq1d ⊒ ( π‘Š ∈ Grp β†’ ( 𝑁 β€˜ 𝑋 ) = ( ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ , π‘₯ ) ) ) β€˜ 𝑋 ) )
7 oveq12 ⊒ ( ( π‘₯ = 𝑋 ∧ π‘₯ = 𝑋 ) β†’ ( π‘₯ , π‘₯ ) = ( 𝑋 , 𝑋 ) )
8 7 anidms ⊒ ( π‘₯ = 𝑋 β†’ ( π‘₯ , π‘₯ ) = ( 𝑋 , 𝑋 ) )
9 8 fveq2d ⊒ ( π‘₯ = 𝑋 β†’ ( √ β€˜ ( π‘₯ , π‘₯ ) ) = ( √ β€˜ ( 𝑋 , 𝑋 ) ) )
10 eqid ⊒ ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ , π‘₯ ) ) ) = ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ , π‘₯ ) ) )
11 fvex ⊒ ( √ β€˜ ( 𝑋 , 𝑋 ) ) ∈ V
12 9 10 11 fvmpt ⊒ ( 𝑋 ∈ 𝑉 β†’ ( ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ , π‘₯ ) ) ) β€˜ 𝑋 ) = ( √ β€˜ ( 𝑋 , 𝑋 ) ) )
13 6 12 sylan9eq ⊒ ( ( π‘Š ∈ Grp ∧ 𝑋 ∈ 𝑉 ) β†’ ( 𝑁 β€˜ 𝑋 ) = ( √ β€˜ ( 𝑋 , 𝑋 ) ) )