Metamath Proof Explorer


Theorem tcphnmval

Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphnmval.n N=normG
tcphnmval.v V=BaseW
tcphnmval.h ,˙=𝑖W
Assertion tcphnmval WGrpXVNX=X,˙X

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphnmval.n N=normG
3 tcphnmval.v V=BaseW
4 tcphnmval.h ,˙=𝑖W
5 1 2 3 4 tchnmfval WGrpN=xVx,˙x
6 5 fveq1d WGrpNX=xVx,˙xX
7 oveq12 x=Xx=Xx,˙x=X,˙X
8 7 anidms x=Xx,˙x=X,˙X
9 8 fveq2d x=Xx,˙x=X,˙X
10 eqid xVx,˙x=xVx,˙x
11 fvex X,˙XV
12 9 10 11 fvmpt XVxVx,˙xX=X,˙X
13 6 12 sylan9eq WGrpXVNX=X,˙X