Metamath Proof Explorer


Definition df-tcph

Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph ). (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion df-tcph toCPreHil=wVwtoNrmGrpxBasewx𝑖wx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcph classtoCPreHil
1 vw setvarw
2 cvv classV
3 1 cv setvarw
4 ctng classtoNrmGrp
5 vx setvarx
6 cbs classBase
7 3 6 cfv classBasew
8 csqrt class
9 5 cv setvarx
10 cip class𝑖
11 3 10 cfv class𝑖w
12 9 9 11 co classx𝑖wx
13 12 8 cfv classx𝑖wx
14 5 7 13 cmpt classxBasewx𝑖wx
15 3 14 4 co classwtoNrmGrpxBasewx𝑖wx
16 1 2 15 cmpt classwVwtoNrmGrpxBasewx𝑖wx
17 0 16 wceq wfftoCPreHil=wVwtoNrmGrpxBasewx𝑖wx