Metamath Proof Explorer


Definition df-tng

Description: Define a function that fills in the topology and metric components of a structure given a group and a norm on it. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-tng toNrmGrp=gV,fVgsSetdistndxf-gsSetTopSetndxMetOpenf-g

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctng classtoNrmGrp
1 vg setvarg
2 cvv classV
3 vf setvarf
4 1 cv setvarg
5 csts classsSet
6 cds classdist
7 cnx classndx
8 7 6 cfv classdistndx
9 3 cv setvarf
10 csg class-𝑔
11 4 10 cfv class-g
12 9 11 ccom classf-g
13 8 12 cop classdistndxf-g
14 4 13 5 co classgsSetdistndxf-g
15 cts classTopSet
16 7 15 cfv classTopSetndx
17 cmopn classMetOpen
18 12 17 cfv classMetOpenf-g
19 16 18 cop classTopSetndxMetOpenf-g
20 14 19 5 co classgsSetdistndxf-gsSetTopSetndxMetOpenf-g
21 1 3 2 2 20 cmpo classgV,fVgsSetdistndxf-gsSetTopSetndxMetOpenf-g
22 0 21 wceq wfftoNrmGrp=gV,fVgsSetdistndxf-gsSetTopSetndxMetOpenf-g