Metamath Proof Explorer


Theorem tcphcph

Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of CCfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphcph.v V=BaseW
tcphcph.f F=ScalarW
tcphcph.1 φWPreHil
tcphcph.2 φF=fld𝑠K
tcphcph.h ,˙=𝑖W
tcphcph.3 φxKx0xxK
tcphcph.4 φxV0x,˙x
Assertion tcphcph φGCPreHil

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphcph.v V=BaseW
3 tcphcph.f F=ScalarW
4 tcphcph.1 φWPreHil
5 tcphcph.2 φF=fld𝑠K
6 tcphcph.h ,˙=𝑖W
7 tcphcph.3 φxKx0xxK
8 tcphcph.4 φxV0x,˙x
9 1 tcphphl WPreHilGPreHil
10 4 9 sylib φGPreHil
11 1 2 6 tcphval G=WtoNrmGrpxVx,˙x
12 eqid -W=-W
13 eqid 0W=0W
14 phllmod WPreHilWLMod
15 4 14 syl φWLMod
16 lmodgrp WLModWGrp
17 15 16 syl φWGrp
18 1 2 3 4 5 6 tcphcphlem3 φxVx,˙x
19 18 8 resqrtcld φxVx,˙x
20 19 fmpttd φxVx,˙x:V
21 oveq12 x=yx=yx,˙x=y,˙y
22 21 anidms x=yx,˙x=y,˙y
23 22 fveq2d x=yx,˙x=y,˙y
24 eqid xVx,˙x=xVx,˙x
25 fvex x,˙xV
26 23 24 25 fvmpt3i yVxVx,˙xy=y,˙y
27 26 adantl φyVxVx,˙xy=y,˙y
28 27 eqeq1d φyVxVx,˙xy=0y,˙y=0
29 eqid BaseF=BaseF
30 phllvec WPreHilWLVec
31 4 30 syl φWLVec
32 3 lvecdrng WLVecFDivRing
33 31 32 syl φFDivRing
34 29 5 33 cphsubrglem φF=fld𝑠BaseFBaseF=KBaseFSubRingfld
35 34 simp2d φBaseF=K
36 inss2 K
37 35 36 eqsstrdi φBaseF
38 37 adantr φyVBaseF
39 3 6 2 29 ipcl WPreHilyVyVy,˙yBaseF
40 39 3anidm23 WPreHilyVy,˙yBaseF
41 4 40 sylan φyVy,˙yBaseF
42 38 41 sseldd φyVy,˙y
43 42 sqrtcld φyVy,˙y
44 sqeq0 y,˙yy,˙y2=0y,˙y=0
45 43 44 syl φyVy,˙y2=0y,˙y=0
46 42 sqsqrtd φyVy,˙y2=y,˙y
47 1 2 3 4 5 phclm φWCMod
48 3 clm0 WCMod0=0F
49 47 48 syl φ0=0F
50 49 adantr φyV0=0F
51 46 50 eqeq12d φyVy,˙y2=0y,˙y=0F
52 45 51 bitr3d φyVy,˙y=0y,˙y=0F
53 eqid 0F=0F
54 3 6 2 53 13 ipeq0 WPreHilyVy,˙y=0Fy=0W
55 4 54 sylan φyVy,˙y=0Fy=0W
56 28 52 55 3bitrd φyVxVx,˙xy=0y=0W
57 4 adantr φyVzVWPreHil
58 34 simp1d φF=fld𝑠BaseF
59 58 adantr φyVzVF=fld𝑠BaseF
60 3anass xBaseFx0xxBaseFx0x
61 simpr2 φxKx0xx
62 61 recnd φxKx0xx
63 62 sqrtcld φxKx0xx
64 7 63 jca φxKx0xxKx
65 64 ex φxKx0xxKx
66 35 eleq2d φxBaseFxK
67 recn xx
68 elin xKxKx
69 68 rbaib xxKxK
70 67 69 syl xxKxK
71 66 70 sylan9bb φxxBaseFxK
72 71 adantrr φx0xxBaseFxK
73 72 ex φx0xxBaseFxK
74 73 pm5.32rd φxBaseFx0xxKx0x
75 3anass xKx0xxKx0x
76 74 75 bitr4di φxBaseFx0xxKx0x
77 35 eleq2d φxBaseFxK
78 elin xKxKx
79 77 78 bitrdi φxBaseFxKx
80 65 76 79 3imtr4d φxBaseFx0xxBaseF
81 60 80 biimtrid φxBaseFx0xxBaseF
82 81 imp φxBaseFx0xxBaseF
83 82 adantlr φyVzVxBaseFx0xxBaseF
84 8 adantlr φyVzVxV0x,˙x
85 simprl φyVzVyV
86 simprr φyVzVzV
87 1 2 3 57 59 6 83 84 29 12 85 86 tcphcphlem1 φyVzVy-Wz,˙y-Wzy,˙y+z,˙z
88 2 12 grpsubcl WGrpyVzVy-WzV
89 88 3expb WGrpyVzVy-WzV
90 17 89 sylan φyVzVy-WzV
91 oveq12 x=y-Wzx=y-Wzx,˙x=y-Wz,˙y-Wz
92 91 anidms x=y-Wzx,˙x=y-Wz,˙y-Wz
93 92 fveq2d x=y-Wzx,˙x=y-Wz,˙y-Wz
94 93 24 25 fvmpt3i y-WzVxVx,˙xy-Wz=y-Wz,˙y-Wz
95 90 94 syl φyVzVxVx,˙xy-Wz=y-Wz,˙y-Wz
96 oveq12 x=zx=zx,˙x=z,˙z
97 96 anidms x=zx,˙x=z,˙z
98 97 fveq2d x=zx,˙x=z,˙z
99 98 24 25 fvmpt3i zVxVx,˙xz=z,˙z
100 26 99 oveqan12d yVzVxVx,˙xy+xVx,˙xz=y,˙y+z,˙z
101 100 adantl φyVzVxVx,˙xy+xVx,˙xz=y,˙y+z,˙z
102 87 95 101 3brtr4d φyVzVxVx,˙xy-WzxVx,˙xy+xVx,˙xz
103 11 2 12 13 17 20 56 102 tngngpd φGNrmGrp
104 phllmod GPreHilGLMod
105 10 104 syl φGLMod
106 cnnrg fldNrmRing
107 34 simp3d φBaseFSubRingfld
108 eqid fld𝑠BaseF=fld𝑠BaseF
109 108 subrgnrg fldNrmRingBaseFSubRingfldfld𝑠BaseFNrmRing
110 106 107 109 sylancr φfld𝑠BaseFNrmRing
111 58 110 eqeltrd φFNrmRing
112 103 105 111 3jca φGNrmGrpGLModFNrmRing
113 4 adantr φyBaseFzVWPreHil
114 58 adantr φyBaseFzVF=fld𝑠BaseF
115 82 adantlr φyBaseFzVxBaseFx0xxBaseF
116 8 adantlr φyBaseFzVxV0x,˙x
117 eqid W=W
118 simprl φyBaseFzVyBaseF
119 simprr φyBaseFzVzV
120 1 2 3 113 114 6 115 116 29 117 118 119 tcphcphlem2 φyBaseFzVyWz,˙yWz=yz,˙z
121 2 3 117 29 lmodvscl WLModyBaseFzVyWzV
122 121 3expb WLModyBaseFzVyWzV
123 15 122 sylan φyBaseFzVyWzV
124 eqid normG=normG
125 1 124 2 6 tcphnmval WGrpyWzVnormGyWz=yWz,˙yWz
126 17 123 125 syl2an2r φyBaseFzVnormGyWz=yWz,˙yWz
127 114 fveq2d φyBaseFzVnormF=normfld𝑠BaseF
128 127 fveq1d φyBaseFzVnormFy=normfld𝑠BaseFy
129 subrgsubg BaseFSubRingfldBaseFSubGrpfld
130 107 129 syl φBaseFSubGrpfld
131 cnfldnm abs=normfld
132 eqid normfld𝑠BaseF=normfld𝑠BaseF
133 108 131 132 subgnm2 BaseFSubGrpfldyBaseFnormfld𝑠BaseFy=y
134 130 118 133 syl2an2r φyBaseFzVnormfld𝑠BaseFy=y
135 128 134 eqtrd φyBaseFzVnormFy=y
136 1 124 2 6 tcphnmval WGrpzVnormGz=z,˙z
137 17 119 136 syl2an2r φyBaseFzVnormGz=z,˙z
138 135 137 oveq12d φyBaseFzVnormFynormGz=yz,˙z
139 120 126 138 3eqtr4d φyBaseFzVnormGyWz=normFynormGz
140 139 ralrimivva φyBaseFzVnormGyWz=normFynormGz
141 1 2 tcphbas V=BaseG
142 1 117 tcphvsca W=G
143 1 3 tcphsca F=ScalarG
144 eqid normF=normF
145 141 124 142 143 29 144 isnlm GNrmModGNrmGrpGLModFNrmRingyBaseFzVnormGyWz=normFynormGz
146 112 140 145 sylanbrc φGNrmMod
147 10 146 58 3jca φGPreHilGNrmModF=fld𝑠BaseF
148 elin xBaseF0+∞xBaseFx0+∞
149 elrege0 x0+∞x0x
150 149 anbi2i xBaseFx0+∞xBaseFx0x
151 148 150 bitri xBaseF0+∞xBaseFx0x
152 151 80 biimtrid φxBaseF0+∞xBaseF
153 152 ralrimiv φxBaseF0+∞xBaseF
154 sqrtf :
155 ffun :Fun
156 154 155 ax-mp Fun
157 inss1 BaseF0+∞BaseF
158 157 37 sstrid φBaseF0+∞
159 154 fdmi dom=
160 158 159 sseqtrrdi φBaseF0+∞dom
161 funimass4 FunBaseF0+∞domBaseF0+∞BaseFxBaseF0+∞xBaseF
162 156 160 161 sylancr φBaseF0+∞BaseFxBaseF0+∞xBaseF
163 153 162 mpbird φBaseF0+∞BaseF
164 43 fmpttd φyVy,˙y:V
165 1 2 6 tcphval G=WtoNrmGrpyVy,˙y
166 cnex V
167 165 2 166 tngnm WGrpyVy,˙y:VyVy,˙y=normG
168 17 164 167 syl2anc φyVy,˙y=normG
169 168 eqcomd φnormG=yVy,˙y
170 1 6 tcphip ,˙=𝑖G
171 141 170 124 143 29 iscph GCPreHilGPreHilGNrmModF=fld𝑠BaseFBaseF0+∞BaseFnormG=yVy,˙y
172 147 163 169 171 syl3anbrc φGCPreHil