Metamath Proof Explorer


Theorem subgnm2

Description: A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses subgngp.h H=G𝑠A
subgnm.n N=normG
subgnm.m M=normH
Assertion subgnm2 ASubGrpGXAMX=NX

Proof

Step Hyp Ref Expression
1 subgngp.h H=G𝑠A
2 subgnm.n N=normG
3 subgnm.m M=normH
4 1 2 3 subgnm ASubGrpGM=NA
5 4 fveq1d ASubGrpGMX=NAX
6 fvres XANAX=NX
7 5 6 sylan9eq ASubGrpGXAMX=NX