Metamath Proof Explorer


Theorem subgnm

Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses subgngp.h H=G𝑠A
subgnm.n N=normG
subgnm.m M=normH
Assertion subgnm ASubGrpGM=NA

Proof

Step Hyp Ref Expression
1 subgngp.h H=G𝑠A
2 subgnm.n N=normG
3 subgnm.m M=normH
4 eqid BaseG=BaseG
5 4 subgss ASubGrpGABaseG
6 5 resmptd ASubGrpGxBaseGxdistG0GA=xAxdistG0G
7 1 subgbas ASubGrpGA=BaseH
8 eqid distG=distG
9 1 8 ressds ASubGrpGdistG=distH
10 eqidd ASubGrpGx=x
11 eqid 0G=0G
12 1 11 subg0 ASubGrpG0G=0H
13 9 10 12 oveq123d ASubGrpGxdistG0G=xdistH0H
14 7 13 mpteq12dv ASubGrpGxAxdistG0G=xBaseHxdistH0H
15 6 14 eqtr2d ASubGrpGxBaseHxdistH0H=xBaseGxdistG0GA
16 eqid BaseH=BaseH
17 eqid 0H=0H
18 eqid distH=distH
19 3 16 17 18 nmfval M=xBaseHxdistH0H
20 2 4 11 8 nmfval N=xBaseGxdistG0G
21 20 reseq1i NA=xBaseGxdistG0GA
22 15 19 21 3eqtr4g ASubGrpGM=NA