Metamath Proof Explorer


Theorem tcphcphlem3

Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphcph.v V=BaseW
tcphcph.f F=ScalarW
tcphcph.1 φWPreHil
tcphcph.2 φF=fld𝑠K
tcphcph.h ,˙=𝑖W
Assertion tcphcphlem3 φXVX,˙X

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphcph.v V=BaseW
3 tcphcph.f F=ScalarW
4 tcphcph.1 φWPreHil
5 tcphcph.2 φF=fld𝑠K
6 tcphcph.h ,˙=𝑖W
7 1 2 3 4 5 phclm φWCMod
8 7 adantr φXVWCMod
9 eqid BaseF=BaseF
10 3 9 clmsscn WCModBaseF
11 8 10 syl φXVBaseF
12 3 6 2 9 ipcl WPreHilXVXVX,˙XBaseF
13 12 3anidm23 WPreHilXVX,˙XBaseF
14 4 13 sylan φXVX,˙XBaseF
15 11 14 sseldd φXVX,˙X
16 3 clmcj WCMod*=*F
17 8 16 syl φXV*=*F
18 17 fveq1d φXVX,˙X=X,˙X*F
19 4 adantr φXVWPreHil
20 simpr φXVXV
21 eqid *F=*F
22 3 6 2 21 ipcj WPreHilXVXVX,˙X*F=X,˙X
23 19 20 20 22 syl3anc φXVX,˙X*F=X,˙X
24 18 23 eqtrd φXVX,˙X=X,˙X
25 15 24 cjrebd φXVX,˙X