Metamath Proof Explorer


Theorem phclm

Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphcph.v V=BaseW
tcphcph.f F=ScalarW
tcphcph.1 φWPreHil
tcphcph.2 φF=fld𝑠K
Assertion phclm φWCMod

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphcph.v V=BaseW
3 tcphcph.f F=ScalarW
4 tcphcph.1 φWPreHil
5 tcphcph.2 φF=fld𝑠K
6 phllmod WPreHilWLMod
7 4 6 syl φWLMod
8 eqid BaseF=BaseF
9 phllvec WPreHilWLVec
10 4 9 syl φWLVec
11 3 lvecdrng WLVecFDivRing
12 10 11 syl φFDivRing
13 8 5 12 cphsubrglem φF=fld𝑠BaseFBaseF=KBaseFSubRingfld
14 13 simp1d φF=fld𝑠BaseF
15 13 simp3d φBaseFSubRingfld
16 3 8 isclm WCModWLModF=fld𝑠BaseFBaseFSubRingfld
17 7 14 15 16 syl3anbrc φWCMod