Metamath Proof Explorer


Theorem phclm

Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
tcphcph.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
tcphcph.f ⊒ 𝐹 = ( Scalar β€˜ π‘Š )
tcphcph.1 ⊒ ( πœ‘ β†’ π‘Š ∈ PreHil )
tcphcph.2 ⊒ ( πœ‘ β†’ 𝐹 = ( β„‚fld β†Ύs 𝐾 ) )
Assertion phclm ( πœ‘ β†’ π‘Š ∈ β„‚Mod )

Proof

Step Hyp Ref Expression
1 tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
2 tcphcph.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
3 tcphcph.f ⊒ 𝐹 = ( Scalar β€˜ π‘Š )
4 tcphcph.1 ⊒ ( πœ‘ β†’ π‘Š ∈ PreHil )
5 tcphcph.2 ⊒ ( πœ‘ β†’ 𝐹 = ( β„‚fld β†Ύs 𝐾 ) )
6 phllmod ⊒ ( π‘Š ∈ PreHil β†’ π‘Š ∈ LMod )
7 4 6 syl ⊒ ( πœ‘ β†’ π‘Š ∈ LMod )
8 eqid ⊒ ( Base β€˜ 𝐹 ) = ( Base β€˜ 𝐹 )
9 phllvec ⊒ ( π‘Š ∈ PreHil β†’ π‘Š ∈ LVec )
10 4 9 syl ⊒ ( πœ‘ β†’ π‘Š ∈ LVec )
11 3 lvecdrng ⊒ ( π‘Š ∈ LVec β†’ 𝐹 ∈ DivRing )
12 10 11 syl ⊒ ( πœ‘ β†’ 𝐹 ∈ DivRing )
13 8 5 12 cphsubrglem ⊒ ( πœ‘ β†’ ( 𝐹 = ( β„‚fld β†Ύs ( Base β€˜ 𝐹 ) ) ∧ ( Base β€˜ 𝐹 ) = ( 𝐾 ∩ β„‚ ) ∧ ( Base β€˜ 𝐹 ) ∈ ( SubRing β€˜ β„‚fld ) ) )
14 13 simp1d ⊒ ( πœ‘ β†’ 𝐹 = ( β„‚fld β†Ύs ( Base β€˜ 𝐹 ) ) )
15 13 simp3d ⊒ ( πœ‘ β†’ ( Base β€˜ 𝐹 ) ∈ ( SubRing β€˜ β„‚fld ) )
16 3 8 isclm ⊒ ( π‘Š ∈ β„‚Mod ↔ ( π‘Š ∈ LMod ∧ 𝐹 = ( β„‚fld β†Ύs ( Base β€˜ 𝐹 ) ) ∧ ( Base β€˜ 𝐹 ) ∈ ( SubRing β€˜ β„‚fld ) ) )
17 7 14 15 16 syl3anbrc ⊒ ( πœ‘ β†’ π‘Š ∈ β„‚Mod )