| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 6 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 9 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 11 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 13 |
8 5 12
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 15 |
13
|
simp3d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 16 |
3 8
|
isclm |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 17 |
7 14 15 16
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |