Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphcph.v |
β’ π = ( Base β π ) |
3 |
|
tcphcph.f |
β’ πΉ = ( Scalar β π ) |
4 |
|
tcphcph.1 |
β’ ( π β π β PreHil ) |
5 |
|
tcphcph.2 |
β’ ( π β πΉ = ( βfld βΎs πΎ ) ) |
6 |
|
phllmod |
β’ ( π β PreHil β π β LMod ) |
7 |
4 6
|
syl |
β’ ( π β π β LMod ) |
8 |
|
eqid |
β’ ( Base β πΉ ) = ( Base β πΉ ) |
9 |
|
phllvec |
β’ ( π β PreHil β π β LVec ) |
10 |
4 9
|
syl |
β’ ( π β π β LVec ) |
11 |
3
|
lvecdrng |
β’ ( π β LVec β πΉ β DivRing ) |
12 |
10 11
|
syl |
β’ ( π β πΉ β DivRing ) |
13 |
8 5 12
|
cphsubrglem |
β’ ( π β ( πΉ = ( βfld βΎs ( Base β πΉ ) ) β§ ( Base β πΉ ) = ( πΎ β© β ) β§ ( Base β πΉ ) β ( SubRing β βfld ) ) ) |
14 |
13
|
simp1d |
β’ ( π β πΉ = ( βfld βΎs ( Base β πΉ ) ) ) |
15 |
13
|
simp3d |
β’ ( π β ( Base β πΉ ) β ( SubRing β βfld ) ) |
16 |
3 8
|
isclm |
β’ ( π β βMod β ( π β LMod β§ πΉ = ( βfld βΎs ( Base β πΉ ) ) β§ ( Base β πΉ ) β ( SubRing β βfld ) ) ) |
17 |
7 14 15 16
|
syl3anbrc |
β’ ( π β π β βMod ) |