| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 6 |
|
tcphcph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 7 |
1 2 3 4 5
|
phclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 10 |
3 9
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 12 |
3 6 2 9
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 13 |
12
|
3anidm23 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 14 |
4 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 15 |
11 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 16 |
3
|
clmcj |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 17 |
8 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 18 |
17
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 21 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
| 22 |
3 6 2 21
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 23 |
19 20 20 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 24 |
18 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 25 |
15 24
|
cjrebd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |