Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphcph.v |
β’ π = ( Base β π ) |
3 |
|
tcphcph.f |
β’ πΉ = ( Scalar β π ) |
4 |
|
tcphcph.1 |
β’ ( π β π β PreHil ) |
5 |
|
tcphcph.2 |
β’ ( π β πΉ = ( βfld βΎs πΎ ) ) |
6 |
|
tcphcph.h |
β’ , = ( Β·π β π ) |
7 |
1 2 3 4 5
|
phclm |
β’ ( π β π β βMod ) |
8 |
7
|
adantr |
β’ ( ( π β§ π β π ) β π β βMod ) |
9 |
|
eqid |
β’ ( Base β πΉ ) = ( Base β πΉ ) |
10 |
3 9
|
clmsscn |
β’ ( π β βMod β ( Base β πΉ ) β β ) |
11 |
8 10
|
syl |
β’ ( ( π β§ π β π ) β ( Base β πΉ ) β β ) |
12 |
3 6 2 9
|
ipcl |
β’ ( ( π β PreHil β§ π β π β§ π β π ) β ( π , π ) β ( Base β πΉ ) ) |
13 |
12
|
3anidm23 |
β’ ( ( π β PreHil β§ π β π ) β ( π , π ) β ( Base β πΉ ) ) |
14 |
4 13
|
sylan |
β’ ( ( π β§ π β π ) β ( π , π ) β ( Base β πΉ ) ) |
15 |
11 14
|
sseldd |
β’ ( ( π β§ π β π ) β ( π , π ) β β ) |
16 |
3
|
clmcj |
β’ ( π β βMod β β = ( *π β πΉ ) ) |
17 |
8 16
|
syl |
β’ ( ( π β§ π β π ) β β = ( *π β πΉ ) ) |
18 |
17
|
fveq1d |
β’ ( ( π β§ π β π ) β ( β β ( π , π ) ) = ( ( *π β πΉ ) β ( π , π ) ) ) |
19 |
4
|
adantr |
β’ ( ( π β§ π β π ) β π β PreHil ) |
20 |
|
simpr |
β’ ( ( π β§ π β π ) β π β π ) |
21 |
|
eqid |
β’ ( *π β πΉ ) = ( *π β πΉ ) |
22 |
3 6 2 21
|
ipcj |
β’ ( ( π β PreHil β§ π β π β§ π β π ) β ( ( *π β πΉ ) β ( π , π ) ) = ( π , π ) ) |
23 |
19 20 20 22
|
syl3anc |
β’ ( ( π β§ π β π ) β ( ( *π β πΉ ) β ( π , π ) ) = ( π , π ) ) |
24 |
18 23
|
eqtrd |
β’ ( ( π β§ π β π ) β ( β β ( π , π ) ) = ( π , π ) ) |
25 |
15 24
|
cjrebd |
β’ ( ( π β§ π β π ) β ( π , π ) β β ) |