Metamath Proof Explorer
Description: The scalar ring of a subcomplex module is a subset of the complex
numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
Assertion |
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 5 |
4
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |